今天是:2024年11月8日 星期五
中文版 >
1.2.10 Basic elementary functions: inverse trigonometric functions
正文

  In high school, we learned the definition of trigonometric functions , the domain of trigonometric functions and the signs of function values , the image properties of sine functions , the image properties of cosine functions , the image properties of tangent functions , and common image transformations of trigonometric functions . As a commonly used basic elementary function, the definition and properties of inverse trigonometric functions will be further given below .

  1. Definition of inverse trigonometric function and principal value interval

        Generally, the inverse function of a trigonometric function is called an inverse trigonometric function.

  Because trigonometric functions

, , , ,

are not monotonic within its domain, so trigonometric functions generally do not have single-valued inverse functions. But in order to get the inverse function of the trigonometric function, we can specifically limit the discussion of the inverse trigonometric function to a certain interval that makes it monotonic . In this way, the trigonometric function is monotonic and single-valued. According to the sufficient conditions for the existence of the inverse function , at this time the trigonometric function The inverse function of the function must exist , and the inverse trigonometric functions of the above trigonometric functions are respectively

, , , ,

  Usually we limit the interval that makes the inverse trigonometric function monotonic as:

The above intervals are respectively called the principal value intervalsof the corresponding inverse trigonometric functions .

  2. Image properties of commonly used inverse trigonometric functions

  (1)  Arcsine function , domain , value range :

 (Figure 1).

  (2)  Arc cosine function , domain , value range:

 (Figure 2).

Figure 1:[ Animation ]      Figure 2: [ Animation ]

  (3)  Arctangent function , domain , value range:

 (Figure 3).

  (4)  Inverse cotangent function , domain , value range:

 (Figure 4).

Figure 3:[ Animation ]      Figure 4:[ Animation ]

点评:0