两个事件的相互独立
在高中阶段,我们学习过两事件相互独立的概念。下面再做进一步总结与拓展。
定义 若两事件满足
,
则称事件独立,或称相互独立。
定理1 设是相互独立的事件,且,则
。
反之亦然。
定理2 设事件相互独立,则事件与,与,与也相互独立。
【证明】
注1:两事件互不相容与相互独立是完全不同的两个概念,它们分别从两个不同的角度表述了两事件间的某种联系。互不相容是表述在一次随机试验中两事件不能同时发生,而相互独立是表述在一次随机试验中一事件是否发生与另一事件是否发生互无影响。
注2:若,则相互独立与互不相容不能同时成立。进一步还可证明:若与既相互独立,又互不相容,则与至少有一个是零概率事件。